4.3. Оцінка вартості серії грошових виплат

Однією з складових фінансової математики є оцінка вартості грошового потоку, який генерується серією грошових виплат протягом декількох періодів часу. Такі потоки часто присутні у різноманітних проектах як у формі витрат, так і у вигляді доходів. Елементи потоку можуть бути незалежними або пов'язаними між собою. Часові проміжки теж можуть бути різними. Відповідно виділяють різні грошові потоки. Ми розглянемо основні з них.

Нехай очікуються рівномірні грошові надходження (С) протягом визначеного періоду (п). Період часу між двома послідовними платежами, який називають інтервалом платежу, співпадає з періодом нарахування відсотків. Кошти надходять на початку періоду. Такий грошовий потік називають простим ануїтетом пе-реднумерандо. Якщо кошти надходять в кінці періоду, то це простий ануїтет постнумерандо.

В проектному аналізі основним є грошовий потік постнуме-рандо, і в повсякденній практиці фінансових операцій він використовується частіше. Це пояснюється принципами обліку, згідно яких прийнято підводити підсумки і оцінювати фінансові результати після закінчення звітного періоду. Потік переднумерандо створюють для аналізу різних схем накопичення коштів.

Оцінка серії грошових виплат може здійснюватись з двох позицій:

визначення майбутньої вартості ануїтету (реалізується схема нагромадження);

визначення теперішньої вартості ануїтету (реалізується схема дисконтування).

Майбутня вартість серії грошових надходжень - це сумарна величина їх індивідуальних майбутніх вартостей

8а = С0(1+і)п+С1(1+і)п-1+_+ Сп. [4.16]

Теперішня вартість - це сумарна вартість індивідуальних дисконтованих вартостей

С1        С2       С3 Сп

Р =       г +       Т +       Т +... +                        [4 17]

(1 + і)1   (1 + і)2   (1 + і)3        (1 + і)п []

Для спрощення оцінки вартості ануїтетів існують відповідні формули:

1. Майбутня вартість ануїтету постнумерандо:

^ = с *(1 +і)"   1 [4.18] і

2. Приведена вартість ануїтету постнумерандо:

Р = с *(1 +-1 [4.19]

Майбутня вартість ануїтету переднумеранадо:

, = с+і)п -+і) [4.20]

і

Приведена вартість ануїтету переднумеранадо:

Р = с *1 - (1 +і)   *(1 + і) [4.21]

і

Множники, що використовуються у формулах поряд з вартістю одиничного платежу С легко визначити з існуючих відповідних фінансових таблиць. Вони також мають свій економічний

.     Т                  (1 + і)п -1      ф          йб ї

зміст. Так, множник називають фактором майбутньої

і

вартості ануїтету. Він відображає майбутню вартість серії грошових виплат з разовим платежем, який дорівнює одній грошовій одиниці.

Резюме

В рамках проектного аналізу важливо вміти оперувати наступними положеннями фінансової математики:

Грошові ресурси, що беруть участь в проекті, змінюють свою вартість з плином часу.

Фінансові розрахунки, пов'язані з залученими в проект коштами, базуються на принципах надання грошей в борг. Кошти можуть бути інвестовані тільки за умови, що майбутні доходи будуть досить високими, щоб відшкодувати втрату вартості грошей в часі та забезпечити кредитору певний прибуток.

Ефективність будь-якої фінансової операції, яка передбачає нарощування вихідної суми до очікуваної в майбутньому, доцільно характеризувати відсотковою ставкою. Вона визначається за певний проміжок часу (як правило - рік), який називається періодом нарахування.

Процес, в якому задані вихідна сума боргу та ставка, називається нарощуванням, шукана величина - нагромадженою сумою, а використана в операції ставка - ставка нагромадження. В даному випадку здійснюється перехід від теперішньої вартості до майбутньої.

Процес, в якому відомою є очікувана в майбутньому вартість (кінцева сума боргу) та ставка, називається дисконтуванням, шукана величина - дисконтована (приведена) вартість, а ставка -ставка дисконтування. В цьому випадку відбувається перехід від майбутньої вартості грошей до теперішньої. У фінансовому менеджменті поняття приведеної вартості є одним з базовим.

Відомі дві основні схеми нарахування відсотків. Схема простих відсотків передбачає незмінність бази нарахування. Схема складних відсотків передбачає капіталізацію відсотків, тобто база нарахування постійно зростає на процентні гроші.

Для кредитора схема простих відсотків більш прибуткова при наданні грошей в борг на короткий термін (коли термін позики менший періоду нарахування), а складних - при довготермінових позиках.

У фінансових розрахунках за базовий період прийнято рік, тому, як правило, оперують річною відсотковою ставкою. Якщо позика короткотермінова, то її тривалість розглядають як відношення терміну позики в днях до кількості днів в році. При цьому існує три варіанти розрахунку:

точні відсотки з точним числом днів позики;

точні відсотки з звичайним числом днів позики;

звичайні відсотки з звичайним числом днів позики.

Часто мають місце фінансові операції, коли оголошена відсоткова ставка не збігається з періодом нарахування. В такому випадку розрізняють номінальну (оголошену) та ефективну (реальну) відсоткові ставки. Ефективна ставка дозволяє оцінити дійсну результативність фінансової операції та порівнювати різні схеми нарахування відсотків між собою.

Змінюючи частоту нарахування відсотків, можна вплинути на ефективність боргової операції. Тому треба чітко усвідомлювати про яку саме відсоткову ставку йдеться в кредитній угоді. Здійснюючи обґрунтування фінансової операції, необхідно контролювати відповідність ставки і періоду нарахування.

При нарахуванні відсотків за дробову кількість років кредитору доцільніше використовувати змішану схему, яка передбачає, що за цілу кількість років нарахування здійснюються за складними відсотками, а за дробову частину - за простими.

Важливе значення у фінансовому менеджменті має поняття грошового потоку, який розглядають як сукупність грошових надходжень або витрат, що виникають через рівні проміжки часу. Особливий вид грошового потоку - ануїтет, що передбачає рівність одноразових грошових виплат.

Ануїтети бувають обмежені в часі та безстроковими. Виплати коштів можуть здійснюватись на початку розрахункового періоду (переднумерандо) та в кінці (постнумерандо).

Для оцінки грошового потоку його елементи, як правило, не можуть бути безпосередньо просумованими. Слід врахувати фактор часу, нагромаджуючи або, дисконтуючи кожний елемент потоку. Для оцінки майбутньої або приведеної вартості ануїтетів розроблені спеціальні залежності, та розраховані відповідні множники.

Слід бути уважним в яких одиницях вимірюється та використовується у розрахунках відсоткова ставка: відсотках чи долях.

Питання для обговорення

У         Використання фактору часу в проектному аналізі.

У         Основні схеми нарахування відсотків.

У         Суть та методика процесу дисконтування.

У         Розрахунок вартості серії грошових виплат.